stay Pract - 111

TIME: 3 Hrs. MARKS: 30

Note:

- 1) All Questions are compulsory.
- 2) Figures to the right indicate marks.
- 3) Statisticals tables will be provided on request.
- Q. 1. Solve any THREE questions from the following.

[5]

a) Fit a straight line y = a + bx to te following data.

Year (x)	1995	1996	1997	1998	1999
Production (y)	250	265	280	270	260
(000 units)					

b) In a population of 4 units, with values 2, 3, 4, 4 write down all possible simple random samples of size 3 without replacement. [5]

Verify

(i) E $(\overline{y}) = \overline{y}$

(ii)
$$V(\overline{y}) = \frac{N-n}{Nn} S^2$$

- c) The data relating to a small project consisting of 11 activities is given below. Present these activities in the form of network and determine [5]
- i) Critical Path
- ii) Earliest and Latest expected time
- iii) Probability of completing the project within scheduled completion of 20 days.

Activity	Opt	timistic (to) Most	likely (tm)	Pessimistic (tp)
1 - 2	1	1	~ 2		3
1 - 3	1	***	2	1	2
1 - 4	1		2		3
2 - 5	4		9		20
3 - 5	2		5		14
3 - 8	3		6		15
4 - 7	1		2		9
4 - 6	2		3		10
5 - 8	1		2		9
78	1		4		7
8 - 9	4	The second second	4		4
3 - 5 3 - 8 4 - 7 4 - 6 5 - 8 7 - 8	2 3 1		9 5 6 2 3 2		20 14 15 9 10 9

d) Fit a curve of the type y = a. x^b to the following data.

[5]

- X: 1 2 3 4 Y: 0.5 0.86 0.7 1.05
- e) The following table gives the activities in a construction project and other relevant information; [5]

Activity

Duration

- 1 2
- 1 3
- 2 4
- 3 5
 - 8

4 - 5

7

- i) Draw the network for the project.
- ii) Find critical path.
- iii) Find free, total and independant floats for each activity.
- Q. 2. Solve any THREE questions from the following.

[5]

a) A Company has factory at F₁, F₂, F₃ which supply to warehouse W₁, W₂, W₃ and W₄. Weekly factory capacities are 11, 13, 19 units respectively. Weekly warehouse requirements are 6, 10, 12, 15 units respectively. Unit shipping Cost (in Rs.) are as follows -

W	are	ho	use
VV	aic	110	ubc

Factory	W_1	W_2	W_3	W_4	Supply
\mathbf{F}_{1}	21	16	25	13	11
\mathbf{F}_1	17	18	14	23	13
F_1	32	27	18	41	19
Demand	6	10	12	15	43

Determine the optimal solution for this company to minimize total shipping cost.

[5]

Max
$$Z = 3\chi_1 + 2\chi_2 + 5\chi_3$$

Subject to,

$$\chi_1 + 2\chi_2 + 2\chi_3 \le 8$$

$$3\chi_1 + 2\chi_2 + 6\chi_3 \le 12$$

$$2\chi_1 + 3\chi_2 + 4\chi_3 \le 12$$

$$\chi_1$$
, χ_2 , $\chi_3 \ge 0$

c) A marketing manager have to visit four different territories for sale. Their expected sales in thousand rupees are given. How should the territories be allocated to these sellers to maximize sales. [5]

Sellers	T_1	T_2	T_3	T_4
S_1	28	39	78	22
S_2	45	55	63	40
S_3	38	39	82	53
S_4	73	42	40	45
S_5	58	35	57	56
0				

d) Solve the following LPP graphically - Minimize $Z = 20\chi_1 + 40\chi_2$ Subject to, [5]

$$\begin{aligned} &18 \chi_1 + 3 \dot{\chi}_2 \geq 54 \\ &3 \chi_1 + 12 \chi_2 \geq 36 \\ &10 \chi_1 + 5 \chi_2 \geq 50 \\ &\chi_1 \;,\; \chi_2 \geq 0 \end{aligned}$$

e) Two sample polls of votes for two candidates A and B for a public office are taken, one from among the residents of rural areas. The results are given in the table.

Votes for area	A	В
Rural	71	. 42
Urban	49	78

Can we conclude at 5% level of significance that the nature of area is related to voting preference in the election.

